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Introduction

• Online control for nutrient removal is standard practice at Aquafin (AQF) 
(Flanders)

• Goal of online control at Aquafin = meeting the effluent consent at the 
lowest cost

• Currently AQF has no stimulus to produce a cleaner effluent than strictly 
necessary since AQF doesn’t pay a levy for the residual pollution

• A new methodology was assessed which sets as goal a reduction of the 
the footprint  of wastewater treatment following a life cycle approach

• For this purpose, calibrated, asm2d models were made of 3 full scale 
WWTP’s on which the two methodologies (costs respecting effluent 
consent versus lowest footprint) were compared
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Outline of the 3 plants

• Plant 1: 27.000 PE, limited online control already in place
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Outline of the 3 plants

• Plant 2: 100.000 PE, online control of length of the aerated phase in place 
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Outline of the 3 plants

• Plant 3: 270.000 PE, state of the art of online control at AQF
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Calibration
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Calibration

7

aeration: 39.1%

sludge
line: 21.7%

dynasand: 10.4%

influent: 6.9%

recirculation: 6.9%

heating: 5.4%

mixers: 2.7%

nitrate retour: 1.8%
not modelled: 1.2%

other: 3.9%

Power usage
(Reality: 1680118 KwH)

(model total: 1659549 KwH)
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Comparison of optimisation strategies

Meeting effluent consent at lowest cost = straigthforward

Reducing footprint of WWTP’s
• Impact is expressed as mPET: milli people equivalents targeted. 1 PE represents 

the environmental impact of 1 hypothetical person in a defined country and year.
• Impact is composed of a number of impact categories such as global warming, 

eutrophication, acidification, ozone depletion, ecotoxicity, human toxicity, …. E.g. 
the EDIP97 methodology normalises the global warming impact of 1 PE to 8700 
kg CO2-equivalents per year.

• Data from Henrik Fred Larsen:
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Parameter Impact
Nitrogen 37,23 mPET / kg N
Phosphorus 269,2 mPET / kg P
Electricity consumption 0,12324 mPET / kWh
Sludge production 0,1 mPET / kg 37% DM sludge
Infrastructure 0,127 mPET / m³ influent treated
FeCl3 40% dosing 2,611 mPET / kg
Sodium acetate dosing 0,7781 mPET / kg NaOAc
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Impact reduction of wastewater treatment
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• Waste water treatment plants are lowering the ecological footprint (as 
expected..) 
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Optimisation scenario’s

• Migration from manual to online control by installing extra online sensors
• Changing setpoints of existing controllers (NH4, SRT, O2, …)
• Alternative (rule based) control algorithms
• Changing position of existing sensors
• Increasing internal recycle pumping capacity

• For each plant roughly 2000 simulations were run

10
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Results / Conclusions

* Sum of operational cost for electricity consumption, sludge disposal and chemical dosing

• Cost optimisation leads to a cost reduction of 2 – 15 % and an impact reduction of 
3 – 13 %

• Footprint optimisation leads to a cost reduction of 0 – 10 % and an impact 
reduction of 7 – 22 %

• Footprint optimisation leads to a cleaner effluent than the legally imposed quality, 
favours bio-P over chemical P removal and results into less NH4 in the effluent
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Cost optimisation Footprint optimisation

Plant 1 Costs* -15 % -10 %
Footprint - 3 % - 7 %

Plant 2 Costs* - 2 % 0 %
Footprint - 13 % - 22 %

Plant 3 Costs* - 7 % - 2 %
Footprint - 7 % - 11 %
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Conclusions

• A reduction of footprint with 1 % leads to an increase of operational costs with 1 
%

• Standardisation of footprint calculation is necessary (!)
• Optimisation towards footprint is very compatible with the way operators tend to 

manually control the plants
• Online control reduces operational costs and increases treatment efficiency
• A plant that is already (partly) controlled online can perform even better if the 

correct controller settings are applied. These correct settings vary from plant to 
plant even when layouts are similar since every plant has its own characteristic 
influent composition.

• Custom made controllers are necessary to achieve the best performance

12



Neptune project, contract no 036845, FP6-2005-Global-4, SUSTDEV-2005-3.II.3.2 13

Acknowledgment

• This study was part of the EU Neptune project (Contract No
036845, SUSTDEV-2005-3.II.3.2), which was financially
supported by grants obtained from the EU Commission within
the Energy, Global Change and Ecosystems Program of the
Sixth Framework (FP6-2005-Global-4)



Neptune project, contract no 036845, FP6-2005-Global-4, SUSTDEV-2005-3.II.3.2

Work package 4
LCA and ICA

Lluís Corominas, Xavier Flores-Alsina, Peter 
Vanrolleghem



Neptune project, contract no 036845, FP6-2005-Global-4, SUSTDEV-2005-3.II.3.2

Case study
Neptune Simulation Benchmark

• A2O plant sized using the Metcalf & Eddy design 
guidelines

• The influent profile have been generated using 
phenomenological models including daily, weekly and 
seasonal variation (low C/N ratio)

• The  EAWAG ASM3 bio P  and the double exponential 
velocity function of Takács are the main process models
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Case study
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Evaluation of control strategies
• Different combinations of controllers tested using the Neptune 

Benchmark
• Comparison of strategies with and without chemical addition
• Is the implementation of control reducing environmental impact?
• Are the controllers based on the addition of chemicals the right 

solution to reduce environmental impact? (evaluation using LCA)
Chemical addition
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Results: dynamic profiles
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Results: LCA evaluation
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Conclusions

• The implementation of control leads to an increase of the 
avoided impact and a decrease in the induced impact

• The most environmentally friendly strategies are the ones 
that include metal and carbon addition as they induce a 
significant reduction of nitrate and phosphorus in the effluent

• LCA gives better results for strategies that improve nutrient 
removal vs those that reduce energy consumption

19
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