

Sludge liquid treatment with Combined Nitritation / Anammox

Adriano Joss, Clémentine Cyprien, Sabine Burger, Michel Blunschi, Steffen Zuleeg, Hansruedi Siegrist

Neptune Meeting 27 January 2010 Ghent

Contents

Scope of sludge liquid treatment

The process

Process control

Greenhouse gas emission

Conclusion

2

Scope of sludge liquid treatment

The process

Process control

Greenhouse gas emission

Conclusion

Crucial

O₂: inhibits anammox bacteria

≤0.5 mgO₂/L during aeration

Substrate for O₂ consumption: always >10 mgNH₄⁺-N/L

NH₃: toxic

<10 mgNH₃-N/L corresponds to <200 mgNH₄+-N/L (pH 7 to 8)

Sedimentation: avoid loss of biomass (bulking)

Rarely required (start-up): flocculant addition

Nitrite oxidizers: "steal" NO₂-, accumulate NO₃-

Concentration of NO₂-<1 mgNO₂-N/L Sludge withdrawal: ≤60 d sludge age

Not crucial

Temperature: only little heat generated (20°C to 35°C)

Lower greenhouse gas emission

Aeration energy: 0.7 kWh/kgO₂
Energy equivalents: 3 kgCO₂/kWh_{electric}
Methanol equivalents: 1.4 kgCO₂/kgMeOH
N₂O equivalents: 310 kgCO₂/kgN₂O

		Conventional Nitrific./Denitr.	Combined NitritAnammox
O ₂ consumption	kgO ₂ / kg _{N elim}	4.3	1.9 ²⁾
Aeration energy	kWh / kg _{N elim}	2.4	1.0
Aeration (CO ₂ equiv.)	kgCO ₂ / kg _{N elim}	1.4	0.6
Carbon source	kg_{MeOH} / $kg_{N elim}$	2.2	-
Carbon source (CO ₂ equ)	kgCO ₂ / kg _{N elim}	3.1	-
N ₂ O production	gN ₂ O / kg _{N elim}	3+ to 100**	6.3 ° ° °
N ₂ O production (CO ₂ equ)	kgCO ₂ / kg _{N elim}	1 to 30	1.9
Total CO ₂ equivalents	kgCO ₂ / kg _{N elim}	5 to 35	2.5

⁺ Only denitrification: R. von Schulthess, PhD ETH Zürich Nr. 10790 (1994)

16

^{**} Own measurements at pilot scale, 2009 and 2010

 $^{^{\}circ\circ\circ}$ Kampschreur et al. 2008, Water Research 42 (2008)

