Sludge liquid treatment with Combined Nitritation / Anammox Adriano Joss, Clémentine Cyprien, Sabine Burger, Michel Blunschi, Steffen Zuleeg, Hansruedi Siegrist Neptune Meeting 27 January 2010 Ghent ### Contents Scope of sludge liquid treatment The process Process control Greenhouse gas emission Conclusion 2 Scope of sludge liquid treatment The process ### **Process control** Greenhouse gas emission Conclusion ### **Crucial** O₂: inhibits anammox bacteria ≤0.5 mgO₂/L during aeration Substrate for O₂ consumption: always >10 mgNH₄⁺-N/L NH₃: toxic <10 mgNH₃-N/L corresponds to <200 mgNH₄+-N/L (pH 7 to 8) Sedimentation: avoid loss of biomass (bulking) Rarely required (start-up): flocculant addition Nitrite oxidizers: "steal" NO₂-, accumulate NO₃- Concentration of NO₂-<1 mgNO₂-N/L Sludge withdrawal: ≤60 d sludge age ### **Not crucial** Temperature: only little heat generated (20°C to 35°C) ## Lower greenhouse gas emission Aeration energy: 0.7 kWh/kgO₂ Energy equivalents: 3 kgCO₂/kWh_{electric} Methanol equivalents: 1.4 kgCO₂/kgMeOH N₂O equivalents: 310 kgCO₂/kgN₂O | | | Conventional Nitrific./Denitr. | Combined
NitritAnammox | |---|--|--------------------------------|---------------------------| | O ₂ consumption | kgO ₂ / kg _{N elim} | 4.3 | 1.9 ²⁾ | | Aeration energy | kWh / kg _{N elim} | 2.4 | 1.0 | | Aeration (CO ₂ equiv.) | kgCO ₂ / kg _{N elim} | 1.4 | 0.6 | | Carbon source | kg_{MeOH} / $kg_{N elim}$ | 2.2 | - | | Carbon source (CO ₂ equ) | kgCO ₂ / kg _{N elim} | 3.1 | - | | N ₂ O production | gN ₂ O / kg _{N elim} | 3+ to 100** | 6.3 ° ° ° | | N ₂ O production (CO ₂ equ) | kgCO ₂ / kg _{N elim} | 1 to 30 | 1.9 | | Total CO ₂ equivalents | kgCO ₂ / kg _{N elim} | 5 to 35 | 2.5 | ⁺ Only denitrification: R. von Schulthess, PhD ETH Zürich Nr. 10790 (1994) 16 ^{**} Own measurements at pilot scale, 2009 and 2010 $^{^{\}circ\circ\circ}$ Kampschreur et al. 2008, Water Research 42 (2008)