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Sludge treatment

• Dewatering and drying

• Stabilization and disinfection (to stop biological processes as 
well as to reduce pathogens and volume of material)

– Anaerobic digestion

– Aerobic digestion

– Composting

– Long time storage

– Lime or nitrite treatment

– Pasteurization
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Sludge composition (stabilized sewage 
sludge)
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Nutrient Nutrients in WW vs. fertilizer consumption 
 % 
Nitrogen 12% - 19% 
Phosphorus 8% - 21% 
Potassium 11% - 24% 
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Sludge composition (stabilized sewage 
sludge), cont.

• Heavy metals

• Organic contaminants

• Pathogens 

Polynuclear aromatic hydrocarbons (PAH) Herbicide residues 
Polychlorinated biphenyls (PCB) Organo-tin compounds 
Polychlorinated terphenyls Phthalate esters 
Phenol Petroleum hydrocarbons 
Chlorinated hydrocarbon solvents and phenols Surfactants 
Organochlorine insecticides Aromatic amines 
Organophosphorus compounds 
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Sludge disposal and recycling

• Ocean dumping

• Land filling 

• Agriculture

• Incineration

• Other methods
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Novel sludge inertisation processes - reuse 
of sludge and of its resources

• Super Critical Water Oxidation (SCWO)
– T=374°C; P=22Mpa

• Wet Oxidation
– T=250-300°C; P=6-10Mpa

• Sludge Gasification
– T=850°C

• Ultra High Temperature Pyrolysis
– T=1200-1400°C

The final result should be:

Reduced sludge volume

Elimination or fixation of pollutants

Recovery of nutrients

Recovery of energy (not only in 
form of heat
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High Temperature Pyrolysis (>1’000°C)

• Only two phases in product

• Gas is free of tar so that cleaning is avoided

• Organic micropollutants are completely destroyed
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High temperature pyrolysis

Digested 
sludge
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High temperature Pyrolysis, pilot plant 
Munich

→
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Gas composition

70% TS 90% TS80% TS

T=1200°C, t=10min
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T=1200°C T=1400°C

3.3% CO2
2.8% CO2

TS = 80%, T = 1200°C

t=5min t=10min

36.1% CO 38.6% CO
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37.3% CO36.4% CO
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Solid product

• The amount of produced solid residue (and consequently the gas) is strongly 
dependent on process temperature and reaction time. 

• TS reduction:

• Beside the amount which leaves the reactor 

(82% of total solid residue) smaller part of the 

solids (16%) could be collected from the gas 

washing tank as well as from the gas cooling

pipes (2%). 

5min 10min
1200°C 62% 81%
1400°C 76% 87%

T t
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Heavy metals distribution among solid 
products (90% TS, T=1200°C, t=10min )
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Results, solid residue (80%TS)

T=1200°C
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Results, solid residue; cont. (80% TS)

t=10min
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Heavy metals content – comparison with EU 
limits1) for fertilizers
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1) Adam et al., (2007) Materials Transactions, 48 (12): 3056-3061
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Heavy metals leaching from the solid 
residue (80% TS)

T time Pb Ni Cr Cd Cu Zn Mn
1200°C 5 min 0.63% 0.15% 0.10% 0.13% 0.04% 0.02% 0.00%

10 min 1.42% 0.19% 0.13% 0.65% 0.08% 0.05% 0.00%
1400°C 5 min 0.77% 0.16% 0.09% 0.16% 0.04% 0.03% 0.01%

10 min 0.73% 0.19% 0.10% 0.14% 0.04% 0.03% 0.01%

• 1g sample was placed in the closed flask and shaken with 20ml of deionisied
water for 5 days. After filtration the heavy metals concentration was measured.

• Neither the temperature nor the residence time influenced the stability of the 
heavy metals in the solid residue. 
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Potential for phosphorus recovery

Ptot.
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Phosphorus bioavailability, 1g in 20ml of 2% 
citric acid

Conclusion: 

A shorter residence time gives a slightly better 
phosphorus bioavailability with a higher P fraction 
remaining in the inert residue.

→

Ptot. init. Percentage leached
(mg/g)

Incineration ash 58-90 0.07%-0.12%

Wet Oxydation solid residue 81.1 8.9%
Pyrolysis (TS80%, 1200°C, 10min) 60.6 9.9%
Gasification in Balingen 58.6 16.5%

5min 10min
init.conc.in res. (mg/g)% leached init.conc.in res. (mg/g) % leached init.conc.in sl. (mg/g)

T
1200°C 69.9 12.6% 60.6 9.9% 27.4
1400°C 61.4 11.9% 65.6 11.8%
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Basic data for the pyrolysis process (full 
scale plant)

Pyrolysis process 
Capacity: 7000tTS/year

TS : 70-90%
Electricity consumption: 320kWh/tonTS
Oxygen consumption: none
Solid mineral out: 250kg/tonTS
Gas out                              
(to the atmosphere) none
Operato and maintenance: 4men/year
Primary energy gain: 960kWh/tonTS
Investment costs: 9milion € (for 25ton/d unit)
Personal costs 200'000€/year
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LCA: Characterization of Pyrolysis scenario

- Sludge composition from European average on WWTP, 4% TS 

Scoping (included):

• Emissions of heavy metals to air -> Cd, Cr, Cu, Hg, Ni, Pb, Zn

• Infrastructure

• Disposal of solid residues

• Chemicals (for off-gas treatment; assumed identical to on-site incineration)

• Transport

• Energy consumption / production

kWh / ton DM

Energy production As electricity + 960 (theoretical yield)

As heat + 2 200 (theoretical yield)

Energy consumption As electricity -340

As heat - 1 510

Energy balance + 1 310
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LCA: Impact profile; Pyrolysis - heat drying
(Normalized and weighted impacts, PET. Weighting factors =1 for all impact categories).

Total (net) = 0,65
The impact of “pyrolysis emissions” is dominated by mercury air emissions

08/02/2010 24 24

LCA: Comparison of impact profiles;
Pyrolysis and on-site incineration

Total (net): Incineration = 0,84 PET/ton DM

Pyrolysis – heat drying = 0,65 PET/ton DM

Pyrolysis – solar drying = 0,63PET/ton DM
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Conclusions

• High temperature allows for avoiding oily phase as a product; only solids 
(free of organics) and gas leave the reactor.

• Gas is free of tar and expensive cleaning is avoided.

• Solid product has low content of heavy metals and there is a possibility 
for phosphorus recycling.

• Present heavy metals are well immobilized, which contributes to overall 
process sustainability.

• LCA studies indicate that high temperature pyrolysis (HTP) might be more 
environmental sustainable than on-site incineration due to apparent lower 
mercury air emissions and a better energy balance

• However, the sustainability assessment is 
highly sensitive to the actual heavy metal 
emissions and the energy balance used for 
HTP is based on theoretical yield 
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